Aerosol Measurement Science

Joe Conny
W. Sean McGivern
Chris Zangmeister

Collaborators:

Mingdong Li, UMD
Diana Ortiz-Montalvo, NRC Post-doc
James Radney, Post-doc, UMD
Rian You, Graduate student UMD
Prof. Michael Zachariah, UMD

Past Collaborators:

Sean Collins, SURF Student Joseph Klems, NRC Post-doc Alicia Pettibone, NRC Post-doc Thomas Allison
Donald Burgess
Prof. Russell Dickerson, UMD
Courtney Grimes, UMD
Keith Gillis
Joseph Hodges
Cary Presser
Robert Willis, EPA

Andy Herzing Xiaofei Ma, Post-doc, UMD

Transmission electron microscopy (TEM) images of aerosol reference material candidates.

Aerosol measurement challenges

Aerosols present significant measurement challenges because they are a **Mixture** of particles in a gas with complex and diverse characteristics.

Phase: Solid or liquid or both

Size: 10 nm to 1 μm

Mass: fg to ng

Shape: all sorts

Urban Concentration:
 10² to 10⁵ particles cm⁻³
 1 to 100 μg m⁻³

Composition: OC, EC/OC, Sulfate, Nitrate, Ammonium, Mineral dust, etc...

Electron image & element maps particle sample – Los Angeles 2004

- Tropospheric Lifetime ~ 1 week
- Transport distance –
 ½ way around the world

Sources

Anthropogenic

Manufacturing

Sea spray

Aerosol impacts

- Warms climate via absorption
- Cools climate via cloud and condensation processes
- Changes surface albedo
- Affects local and global scale weather and air quality

14 ug/m3 loading - Acadia, ME - Out of EPA attainment

886 ug/m3 loading - Beijing, China

Radiative forcing attributed to aerosols

Aerosols:

- 2nd leading cause for radiative forcing
- represents ≈75%
 of forcing
 uncertainty

UN IPCC 2013

Needs of the communities

Improved measurements through:

- Traceable measurements
- Standard materials
- Data for materials with known properties
- Methods for measurement intercomparisons
- Improved instrumentation specificity and sensitivity
- Terminology clarification
- Cross disciplinary understanding of aerosols, their measurement and the underlying chemistry

NIST Aerosol projects

- Characterize radiative properties of black and brown carbon systems
 - Develop and apply new optical measurement capabilities
 - Correlate optical properties with chemical composition
 - Develop a transferable aerosol with known optical properties

Mass absorption of soot, brown carbon, and BrC Solution

- Microanalysis of heterogeneous aerosols
 - Determine shape, composition, & internal structure
 - Correlate optical properties based on 3-D spatial models
- Focused Ion-Beam Tomography and 3-D Spatial Modeling
- Organic aerosol chemistry impacting solar radiation
 - Use a photochemical flow reactor to elucidate key VOC oxidation reactions producing chromophores and particulates
 - Characterize droplet formation propensity

Atmospheric aerosol processes

Tools & Expertise

Particle generation

Soot & spray generation Flow reactor Conditioning tools

Particle characterization

Size - Differential mobility analyzer

Mass - Aerosol particle mass analyzer

Number - Condensation particle counter

Cloud condensation nuclei counter

Chemical analysis including 3-D structure and composition

High performance liquid chromatography Tandem mass spectrometer

Focused ion beam scanning electron microscope with X-ray detection

Transmission electron microscopy

Electron backscatter diffraction

Inductively coupled plasma mass spectrometer

Optical properties

Cavity ring down spectrometer
Photoacoustic absorption spectrometer

Cavity ringdown and photoacoustic spectrometers

FEI Nova NanoLab 600 focused ion-beam scanning electron microscope

Photochemical Flow Reactor to Study Extensive Oxidation of Organic Compounds

Holistic understanding of aerosols and their climate impact

Measurement perspectives for carbonaceous aerosols

Chemical Optical Thermochemical

Graphene-sheets
PAHs, humic acids, etc.
Hydrocarbons

Optical

Black carbon (BC)
Brown carbon (BrC)
Organic carbon (OC)

Organic carbon (OC)

Thermochemical

Elemental carbon (EC)
EC/OC
Organic carbon (OC)

